[image: image3.wmf]

PSP India

[image: image4.wmf]

USB 2.0 RNDIS Driver

Design Document
PSP, TI India.

September 10, 2003

Revision 0.2

Revision History

	Revision
	Date
	Name
	Description

	0.1
	Jul 31, 2003
	Sabyasachi Dey
	Initial draft created.

	0.2
	Sep 10, 2003
	Sabyasachi Dey
	Modified Protocol Driver section for APIs, buffer management, task description. Completed IOCTL commands.

Table Of Contents

41
INTRODUCTION

41.1.
Purpose of Document

41.2.
Scope

41.3.
Audience

41.4.
Risks

41.5.
Deliverables

41.6.
Abbreviations

51.7.
References

62
SYSTEM OVERVIEW

83
DESIGN CONSIDERATIONS

83.1.
Assumptions and Dependencies

83.2.
Hardware Limitations

83.3.
Design Goals and Guidelines

94
SYSTEM ARCHITECTURE

115
DETAILED DESIGN

115.1.
USB Protocol Driver

115.1.1 COMPONENT DESCRIPTION

125.1.2 INTERFACE DESCRIPTION

165.1.3 DESIGN DESCRIPTION

215.2.
USB RNDIS Driver

215.2.1 COMPONENT DESCRIPTION

225.2.2 INTERFACE DESCRIPTION

275.2.3 DESIGN DESCRIPTION

305.3.
VxWorks END Driver

305.3.1 COMPONENT DESCRIPTION

305.3.2 INTERFACE DESCRIPTION

305.3.3 DESIGN DESCRIPTION

315.4.
Management & Configuration Utilities

315.1.1 COMPONENT DESCRIPTION

315.1.2 INTERFACE DESCRIPTION

315.1.3 DESIGN DESCRIPTION

326
QUALITY POLICY

337
Appendix A – USB IOCTL Operations

348
Appendix B – RNDIS IOCTL Operations

359
Appendix C – USB Error List

3610
Appendix D – RNDIS Error List

1 INTRODUCTION

1.1. Purpose of Document

USB 2.0 device controller is TI’s new initiative on USB front. USB 2.0 device controller will power Communication Processors with distinct advantage of widely popular interface at much higher data rate than earlier generation of USB 1.1 device controllers used in current communication processors.

This document will describe the various components of 2.0 Device Driver software.

1.2. Scope

	No
	IS
	IS NOT

	1
	This is a design document for USB 2.0 RNDIS Device Driver.
	This document will not discuss about neither USB 2.0 Protocol nor RNDIS.

	2
	This document will describe various user interfaces and management mechanisms in addition to driver details.
	This document will not describe how each specific routine should be implemented.

1.3. Audience

All engineers in PSP, India and Israel, USB development team at Dallas BSTC team.

1.4. Risks

1.5. Deliverables

Deliverables of the project is USB 2.0 RNDIS Device Driver.

	Platform
	Deliverables

	VxWorks
	USB 2.0 RNDIS END Driver.

	Linux
	USB 2.0 RNDIS Net Driver

1.6. Abbreviations

	Acronym
	Description

	END
	Enhanced Network Driver (vxWorks)

	NDIS
	Network Driver Interface Specification (Microsoft)

	RNDIS
	Remote NDIS

	USB
	Universal Serial Bus

1.7. References

· USB 2.0 Specification

 (http://www.usb.org/developers/)

· RNDIS Specification

 (http://www.microsoft.com/hwdev/resources/hwservices/rndis.asp)

· USB 2.0 Silicon Design
(http://www.dal.asp.ti.com/dsl/projects/ip-mod/usb20-device/module-usb20.htm)

· CPPI USB 2.0 HAL API Document
(http://www.india.ti.com/~sabya/project/USB/DOCS/usb_2.0_hal.pdf)

SYSTEM OVERVIEW

USB mandates a host driven communication flow and allows only pull-mode data transfer, i.e., data is pulled from a device by the host. Host initiates any communication to and from any device. The USB elements hierarchy is shown in Fig 2-1. There can be only one host in any USB system.

[image: image1.wmf]

Fig 2-1. USB Bus Topology

USB Host is the root most point in the USB connectivity hierarchy. The USB devices are connected in a tiered star topology. Root hub (integrated in Host) is the root of this tree. Data communication always takes place between a device and USB Host.

USB 2.0 Device can only communicate with a 2.0 Host Controller.

 [image: image2.png]

Fig 2-2. Data flow in USB

The software developed will be a driver for a USB 2.0 Device Function. Additionally the driver will contain a RNDIS driver to talk to RNDIS protocol stack on Host side. The software will also implement a network interface to bind the software to the device operating system (VxWorks, Linux, WinCE) IP Protocol Stack.

DESIGN CONSIDERATIONS

3.1. Assumptions and Dependencies

The following assumptions are made during the USB 2.0 Software designing:

· A well documented HAL (Hardware Abstraction Layer) is available,

· Implementation will be done only in ANSI C, however no assumption should be made about the compiler,

Only Management & Configuration Interface will be exposed to end-user. Proper documentation should accompany for user reference.

3.2. Hardware Limitations

· Does not support MIB-II Counter.

· All USB 2.0 CPPI channels must be tore down together. Individual channel teardown is not possible.

3.3. Design Goals and Guidelines

Following design goals and guidelines have been considered for designing USB 2.0 RNDIS Driver Software. These design goals and guidelines are applicable at a macro level and there could be necessary deviations in micro level from these in sub modules in USB Software. Some of the guidelines are applicable for Coding also.

· Portability across VxWorks, Windows CE, Linux

· Standard Compliance (USB 2.0, RNDIS)

· Quality strategies conforming to TII process

· Hooks for easy debugging and testing

· Performance and scalability

· Focus on space optimization since memory becomes expensive for SOCs

· Reusable and moduler design of software.
· Localize 'C' variables, this will allow the compiler to make optimizations reducing register and stack usage.
· Try not to use more than 4 formal parameters for ‘C’ functions

· Try to align buffers and commonly used data structures to align on 16-byte boundary rather than commonly used 32-bit boundary. This will make efficient use of MIPS cache lines (Although the driver does not make any assumption about Processor still this will be useful as all TI Communication Processors are based on MIPS, similar processors mostly offer 16-byte cache line making this proposition more valuable)

· All routines should return a status and should not return void

· Driver will not try to use direct ‘C’ data types, instead it should use either OSAL or PSP defined data types.

SYSTEM ARCHITECTURE

USB 2.0 Driver Software allows application software to communicate with host usig the USB Device function as an Ethernet like communication interface. The high level architecture of the driver software is depicted in the following diagram.

Fig 4-1. Architecture Overview

As shown in Figure 4-1 USB System Software will consists of the following components:

1. USB 2.0 HAL : CPPI 3.0 based USB 2.0 CP HAL. Basically provides support to access 2.0 Silicon in a abstract hardware neutral way. Data communication is governed by TI Proprietary CPPI based technology. This is same as other CP HALs except regarding END POINT 0. This HAL defines a set of routines to control and receive/transmit data over End Point 0. USB HAL will not be discussed further in this document. Details of HAL APIs and Data Structures can be found in HAL API document (Please refer to “Reference” section). This module is operating system neutral but hardware dependent.

2. USB Protocol Driver : This module implements the USB 2.0 protocol. It takes care of END POINT initialization, enumeration, control data transfer. Upper layer RNDIS stack depends on this layer for communicating with other side of RNDIS pipe. This module is hardware independent and OS abstracted.

3. USB RNDIS Driver : RNDIS allows USB 2.0 Device Function to implement a Ehternet Like interface which can provide TCP/IP connectivity. The driver software in discussion will implement RNDIS Stack on top of USB 2.0 Protocol. This module is hardware independent and OS abstracted.

4. VxWorks END Driver : USB RNDIS Driver will implement this END interface to allow vxWorks Applications to transfer IP packets over this communication interface. This is the only OS dependent part of the whole driver software.

5. Management & Configuration Utilities : A simple Command Line Interface (CLI). This utility will be helpful in status monitoring, event logging, statistics, device testing etc. Some data structures in USB Driver Software will be accessible through this interface. Set of management utilities may vary from release to release. And in future web-based interface may be exposed.

Well defined and clean interface is maintained between all layers in the driver stack.

Throughout the document the word “task” and “thread” will be used interchangeably and they will always mean exactly same entities. An independent control of action. And ofcourse each “thread” or “task” can see each other’s memory.

Detailed startup sequence is platform specific and will be added later. However, there will be an option to start USB Driver during system boot time or later as a standalone driver. This can be a boot parameter like bootline in VxWorks.

DETAILED DESIGN

5.1. USB Protocol Driver

5.1.1 COMPONENT DESCRIPTION

USB Protocol driver is USB 2.0 Protocol specific implementation of the driver. This module is responsible for silicon initialization, device function enumeration, control and bulk data transfer with USB host.

Fig 5-1-1. USB 2.0 Protocol Driver.

USB Protocol Driver has the following high level functional components as shown in Figure 5-1-1:

· USB Protocol Driver Interface (UPDI) : This interface allows any upper layer component to interact with the Host Side driver using USB Protocol Driver. This interface also allows multiple higher layer components to connect to same USB 2.0 Protocol Driver layer. As a result USB Protocol driver can be reused for various Device functionalities in addition to RNDIS. The interface will have routines to initialize protocol driver as well as all necessary data transfer and control routines. Upper layer drivers are normally USB class drivers.

· End Point (EP) Manager (EPM) : End Point manager does all control and bulk data transfer with HAL. All data packets are delivered to upper layer class drivers using multiplexing pipes. Control packets targeted for Protocol Driver are processed by it otherwise handed over to upper layer class driver.

· Initialization & Configuration Manager (ICM) : This module will initialize the USB 2.0 hardware with the help of HAL. USB enumeration, device class information, configuration information will be kept in a configuration repository. This repository is modifiable through Management Interface dynamically.

· MIB Manager : Will implement MIB-II RFCs. MIB statistics will be available through OS specific driver interfaces (END driver ioctl etc.) or through USB management APIs.

· HAL Interface : This module will interface with USB 20 CPPI HAL.

Protocol Driver actually implements USB device function. It initializes all End Points, responds to all Host Driver Queries, enables Class Drivers to establish communication.

5.1.2 INTERFACE DESCRIPTION

All USB Protocol Interface Routines are defined below.

	usb_drv_init

Initializes USB Protocol Driver.

Synopsis

USB_STATUS

usb_drv_init
(

[in] CLASS_DEV *class_dev,

[out] USB_DEV **dev

);

class_dev
This structure will contain all Class Driver related information (like RNDIS Communication Class Driver etc.).

dev
USB device structure. This structure will contain all device specific information and will be passed during initialization.

Description
USB Protocol Driver initialization happens when this routine is called. Before calling this routine nothing about the device state can be assumed. Class driver will call this function to initialize USB protocol stack as well will populate all class driver related information.

Return Values
USB_STATUS_OK -
Initialization successful.

Negative value - Error. See Error list.

	usb_drv_start
Class drivers register themselves by calling this Protocol Driver API.

Synopsis

USB_STATUS

usb_drv_start

 (

 [in] USB_DEV *p_dev,

 [in] USB_CONFIG *usbcfg

);

p_dev
Pointer to the USB device previously obtained by the call to usb_drv_init.

usbcfg
Pointer to the USB Protocol Configuration information (descriptors).

Description
Start the Protocol Driver. Bring to a state for data transfer. Interrupt Service routines will be connected to OS. Timers (if any) will be started.

Return Values
USB_STATUS_OK
- Start succeeded

Negative Value - Error. See Error list.

	usb_drv_stop Class driver (RNDIS) stops the Protocol Driver.

Synopsis

USB_STATUS

usb_drv_stop ([in] USB_DEV *p_dev);

p_dev
Pointer to the usb device obtained through previous call to usb_drv_init().

Description
Class drivers stop the Protocol Driver. Will be in a state where no data transfer is possible. All pending transfers are aborted. Interrupt Servide routines will be deregistered with OS. Any running timer will be canceled.

Return Values
USB_STATUS_OK -
Stop operation successful.

Negative value - Error. See Error list.

	usb_drv_shutdown Shuts down the Protocol Driver.

Synopsis

USB_STATUS

usb_drv_shutdown ([in] USB_DEV *p_dev);

p_dev
Pointer to the usb device obtained through previous call to usb_drv_init().

Description
Will shutdown the driver. All memory and buffers will be released. Any other OS resources (semaphore, mutex, timer etc.) will be released. HAL will be closed.

Return Values
USB_STATUS_OK -
Clean shutdown.

Negative value - Error. See Error list.

	usb_drv_send
Class drivers send data over USB using this routine.

Synopsis

USB_STATUS

usb_drv_send
(

[in] USB_DEV *p_dev,

[in] USB_EP
 *ep,

[in] USB_PKT *pkt,

[in] VOID *sendInfo

);

p_dev
The descriptor obtained after calling usb_drv_init().

ep
End Point (opened before) over which communication will take place

pkt
USB Data packet. Class drivers (like RNDIS) will create this packet which will have a packet id and a data buffer.

sendInfo
Any private information. This will be returned to the caller with send_complete() routine

Description
Send is non-blocking call. This means that send will return immediately. However, data transmission over USB bus may not be complete. When data transfer is completed USB Protocol Driver will call sendComplete routine of corresponding to the class driver.

Return Values
USB_STATUS_OK -
Send accepted by Protocol Driver.

Negative value - Error. See Error list.

	usb_drv_ioctl
This API provides a strong control/config interface for Protocol Driver

Synopsis

USB_STATUS

usb_drv_ioctl
(

[in] USB_DEV *p_dev,

[in] UINT32 command,

[inout] VOID *data

);

p_dev
Pointer to the usb device obtained through previous call to usb_drv_init().

command
USB device structure. This structure will contain all device specific information and will be passed during initialization.

data
Data buffer related to the command.

Description
USB Protocol Driver initialization happens when this routine is called. Before calling this routine nothing about the device state can be assumed. A detail list of IOCTL commands can be found in Appendix A.

Return Values
USB_STATUS_OK -
Command successful.

Negative value - Error. See Error list.

	usb_drv_ep_open
Callback routined to be called by HAL

Synopsis

USB_STATUS

usb_drv_ep_open
(

[in] USB_DEV *p_dev,

[in] USB_PIPE *pipe,

[out] USB_EP **p_ep

);

p_dev
Pointer to the usb device obtained through previous call to usb_drv_init().

pipe
Pointer to the PIPE structure. A pipe is defined by the class driver and sent to the USB Protocol Driver. Pipe is a bidirectional communication channel between Protocol Driver and Class Driver.

p_ep
Pointer to the initialized End Point.

Description
USB Protocol Driver initialization happens when this routine is called. Before calling this routine nothing about the device state can be assumed.

Return Values
USB_STATUS_OK -
Success.

Negative value – Error. See Error list.

	usb_drv_ep_close
Callback routined to be called by HAL

Synopsis

USB_STATUS

usb_drv_ep_close
(

[in] USB_EP *p_ep

);

dev
USB device structure. This structure will contain all device specific information and will be passed during initialization.

Description
USB Protocol Driver initialization happens when this routine is called. Before calling this routine nothing about the device state can be assumed.

Return Values
USB_STATUS_OK -
Success.

Negative value – Error. See Error list.

	usb_drv_send_complete
Routine to be called by HAL

Synopsis

INT32

usb_drv_send_complete_cb
(

[in] USB_PIPE *pipe,

[in] VOID *sendInfo
);

sendInfo

Pointer to OS-specific information. This structure

was passed to the CPHAL via Send(), and

returned to the OS here.
Description
Indicates to Class Driver that the transmission has completed. Return value may not be checked by USB driver. This routine is implemented by Class Driver for each communication pipe (End Point) over which Class Driver intends to send data.

Return Values
0 -
Initialization successful.

Non zero – Error. (Currently not checked by USB Protocol Driver)

	usb_drv_os_receive
 OsReceive function to be called by HAL.

Synopsis

INT32

usb_drv_os_receive
(

[in] OS DEVICE *OsDev,

[in] FRAGLIST *FragList,

[in] bit32u FragCount,

[in] bit32u PacketSize,

[in] HAL_RECEIVEINFO HalReceiveInfo,

[in] bit32u mode
);

OsDev
OS Device structure (refer HAL document)

FragList

Array of structure consisting of three 32-bit words

containing Length, Data Address, and OsInfo

FragCount

Number of {length,data} pairs in FragList

PacketSize
Number of bytes received

HalReceiveInfo
Pointer to HAL information used to be returned to the HAL via RxReturn().

mode
Lower 8 bits of this value is the channel number

Note : Mode & 0xff = Channel number (undocumented)
Description
USB Protocol Driver initialization happens when this routine is called. Before calling this routine nothing about the device state can be assumed.

Return Values
0 -
success

Non zero – Error. See Error list.

Note : For HAL OS Service routines please refer to HAL documentation.

5.1.3 DESIGN DESCRIPTION

This section will define key data structures used by USB Protocol Driver and important data/control flow diagrams.

Key Data Structures

· USB_DEV

· USB_EP

· USB_PKT

USB_DEV : Defines the USB Protocol Driver Master Control Block.

struct USB_DEV_T

{

 OSAL_MUTEX mutex;

 HAL_DEVICE *hal_dev;

 HAL_FUNCTIONS *hal_funcs;

 OS_FUNCTIONS *os_funcs;

 USB_CONFIG *usb_cfg;

 USB_CD_CONFIG *cd_cfg; /* Class Driver Configuration */

 USB_EP ep_control; /* Control End Point */

 USB_EP ep_table[USB20_NUM_EP];

 USB_CCPU *ccpu; /* Control Command Processor Unit */

 USB_CTL_TX_QUEUE_NODE *ctl_tx_queue;

 USB_CTL_TX_QUEUE_NODE *ctl_tx_free_list;

 USB_PARAMS params;

 USB_STATS stats;

 USB_CHANNEL channel[USB20_NUM_CHANNEL]; /*Status per channel*/

 UINT32 status; /* Status of driver */

 UINT32 link_status; /* Link is up or down */

 VOID *priv; /* Private Data for USB */

} ;

USB_EP : Defines the USB End Point structure.

struct USB_EP_T

{

 UINT8 id;
 /* End Point Number */

 UINT8 type; /* BULK | CONTROL | INT */

 UINT8 dir; /* End Point Direction */

 UINT8 max_size; /* Maximum Transfer Size on this End Point */

 USB_PIPE *pipe; /* Pipe configured by Class Driver */

 USB_DEV *usb_dev; /* Pointer to USB Device structure, driver MCB */

 CHANNEL_INFO *channel; /* HAL Specific channel information, type is opaque

 to upper layer */

 UINT32 state : 8;

 UINT32 status : 24;

} ;

USB_PKT :

struct USB_BUF_T {

 UINT8 *data;

 UINT32 len;

 void *info;

} ;

struct USB_PKT_T

{

 USB_BUF *buf_list;

 UINT32 num_buf;

 UINT32 pkt_size;

} ;

Bipartite Buffer Management

Buffer management responsibilities are split between Protocol Driver and Class Driver. For bulk and isochronous data transfer buffer management will be done by Class Driver whereas for Control and Interrupt data transfer buffer management will be done by Protocol Driver. This will eliminate the need for Protocol Driver to understand the details of bulk/isochronous data transfer policies and mechanism. However, Protocol Driver will facilitate a very generic buffer management policy for Class Driver.

Driver Tasks

Driver will have two tasks as following :

· Control Task : All USB interrupts (basically Control End Point related interrupts) will be serviced in this task. Task Priority for this should be high as all such interrupts and associated responses should meet strict timing requirements.

· Data Task : Reception of bulk / isochronous packets and dispatching them to upper layers will be done in this task. This need not have high priority.

Both the tasks are configurable and optionally they can be excluded / included from the driver.

Enumeration Sequence Diagram (Fig 5.1.3.1)

Fig. 5.1.3.1 USB Device Enumeration

Control Data Transfer Sequence Diagram (Fig. 5.1.3.2)

NOTE: Class request includes RNDIS query, initialize, set messages
Fig 5.1.3.2 USB Control Data Flow

Bulk Data Transfer Sequence Diagram (Fig 5.1.3.3)

Fig 5.1.3.3 Bulk Data Transfer Sequence Diagram

USB RNDIS Driver

5.2.1 COMPONENT DESCRIPTION

PSP USB RNDIS Protocol Stack implements RNDIS 1.1 protocol specification from Microsoft. All RNDIS components are shown in Figure 5-2-1.

Fig. 5-2-1. USB RNDIS Driver.

USBD will have following functional components :

· Network Data Transfer Unit : This unit provides a communication channel through logical pipes and IRPs. Client software sends and receives data to/from devices through this module.

· Control Unit : This unit provides a set of APIs for pipe management, data transfer etc.

· Buffer Manager : Controls the bus with the help of HCD. This module manages bus state. Also in case of any error on bus this module takes action and notifies all clients about the bus related events like suspension, resumption, reset.

· MIB Manager : This unit is responsible for configuring the newly attached devices and add them to the active topology. When a device is detached this unit removes the device from active topology. This unit maintains the active topology.

· Init / Reset Unit : Manages all hubs attached to the bus. Hub driver runs as an independent separate task. If a new device is attached hub driver first gets notified through the control pipe of the hub. Also when a device is detached the hub driver gets notified. If the detached device is a hub then this unit makes sure that all children of the hub are also disconnected and removed from the active topology.

· State Machine : Consists of a set of routines which calculates bandwidth requirements and availability for a particular endpoint. Depending on this a particular bus transaction may be accepted or refused.

· RNDIS Driver Interface : These APIs form a library which is used by both HCD as well as the root hub driver. The API set includes bandwidth management routines, HCD registration routines, bus & device structures management routines, device configuration routines etc.

· USB Protocol Driver Interface : Exposes a set of routines which allows an application to list all devices attached, bus status, modify device configuration, and to see the USBD log.

Client Services Unit (USBDI) and Device Configuration & Management Interface Unit (HCMI) will

5.2.2 INTERFACE DESCRIPTION

USBD exposes two independent set of interfaces. First one is termed as USBD Interface (USBDI). This interface is documented and published.Second one is a collection of management and configuration routines. This interface is neither documented nor published. Intent of this second interface is to allow TI internal teams to provide utilities and framework for USB management and configuration.

RNDIS Driver Interface

	usb_rndis_init

Initializes RNDIS driver.

Synopsis

RNDIS_HANDLE
usb_rndis_init
(

[in] rndis_net_t *rndis_net

);

rndis_net
This structure will contain all information required for initializing the driver and will be passed during initialization. This includes the callback routines and configuration data.

Description
RNDIS driver initialization happens when this routine is called. Typically called as part of the END driver load function (Ref VxWorks Network Programming).

The call back routines will be for the following functionality

· OS (system) Send Complete Notification

· OS (system) Receive data

· Getting buffers (for receiving)

· Freeing up of buffers

· Event Transfer Callback

Return Values
Non null value - Initialization successful.

NULL value - Error. See Error List.

	usb_rndis_start
Start the RNDIS driver

Synopsis

RNDIS_STATUS
usb_rndis _start (

[in] RNDIS_HANDLE handle

);

handle
Handle to the RNDIS layer.

Description
This will start the RNDIS driver and bring up the stack so that data transmission can be started.

Here the endpoints are opened for the Control and Data channels. Callback routines for these endpoints will be registered with the calls to usb_drv_ep_open.

Return Values
RNDIS_STATUS_OK - Call successful.

Negative value - Error. See Error List.

	usb_rndis _stop
Halts the RNDIS driver.

Synopsis

RNDIS_STATUS
usb_rndis_stop (

[in] RNDIS_HANDLE handle

);

handle
Handle to the RNDIS layer.

Description
This is a complementary function rndis_usb_start. The function will halt the RNDIS stack and disableall further bulk data transactions.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_shutdown
Unloads the RNDIS driver.

Synopsis

RNDIS_STATUS
usb_rndis_unload (

[in] RNDIS_HANDLE handle

);

handle
Handle to the RNDIS layer.

Description
This is a complementary function rndis_usb_load. The function will cleanup all the initializations done in rndis_usb_load.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_send
Send a data packet over the USB bus using RNDIS protocol

Synopsis

RNDIS_STATUS
usb_rndis_send
(

[in] RNDIS_PKT *packet,

);

packet
Array of buffers containing the packet

Description
This function is used by the OS specific driver to send a packet over the USB bus (as bulk data)

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_ioctl
Config/Control API to the RNDIS driver

Synopsis

RNDIS_STATUS
usb_rndis_ioctl
(

[in] RNDIS_HANDLE handle,

[in] INT32 command,

[inout] UINT32 *data

);

command
Identifier for the command to execute

data
Data for the command

Description
This API gives an interface to the OS driver to configure and control the RNDIS driver. It also provides an interface to query for some data (like MIB data) and also acts as a method of reporting events to the RNDIS-USB drivers.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

USB Protocol Driver Interface
	usb_rndis_notify_cb
Routine for the USB protocol driver to notify RNDIS about events

Synopsis

RNDIS_STATUS
usb_rndis_notify_cb
(

[in] INT32 event,

[in] UINT32 *data

);

command
Identifier for the event

data
Data associated with the event

Description
This function is registered with the USB protocol driver during initialization. The USB driver will use this API to notify the RNDIS driver about events that occur at the USB layer, hardware layer etc. A typical example of an event that is notified is the USB reset event.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_query_cb
Routine for the USB protocol driver to query RNDIS for information

Synopsis

RNDIS_STATUS
usb_rndis_query_cb

(

[in] INT32 query_id,

[out] UINT32 *data

);

command
Identifier for the query

data
Data associated with the query

Description
This function is registered with the USB protocol driver during initialization. The USB driver will use this API to query the RNDIS driver for information it requires. A typical example of a query would be when the USB driver queries for some descriptor data.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_control_rcv_cb
Function to receive data on Control Endpoint

Synopsis

RNDIS_STATUS
usb_rndis_control_rcv_cb
(

[in] ep_t * ep

[in] RNDIS_PKT *pkt,

);

ep
Handle to the endpoint

pkt
Packet with received data

Description
This function is registered with the USB protocol driver during initialization as the receive call back function for EP0. The USB driver will use this API to send the RNDIS driver data from EP0 endpoint.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_control_tx_complete_cb
Function to notify completion of transmit on the control endpoint

Synopsis

RNDIS_STATUS
usb_rndis_control_tx_complete_cb
(

[in] ep_t *ep

[in] VOID *sendInfo,

);

ep
Handle to the endpoint

sendInfo
Private info sent during send call

Description
This function is registered with the USB protocol driver during initialization as the transmit complete notification call back function for EP0. The USB driver will use this API to indicate to the RNDIS driver about the completion of the transmit and also whether any error occurred during transmit.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_int_tx_complete_cb
Function to notify completion of transmit on the interrupt endpoint

Synopsis

RNDIS_STATUS
usb_rndis_int_tx_complete_cb
(

[in] ep_t * ep,

[in] VOID *sendInfo,

);

ep
Handle to the endpoint

sendInfo
What was passed during send() call

Description
This function is registered with the USB protocol driver during initialization as the transmit complete notification call back function for EP0. The USB driver will use this API to indicate to the RNDIS driver about the completion of the transmit and also whether any error occurred during transmit.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_bulk_rcv_cb
Function to receive data on the Bulk Endpoint

Synopsis

INT32

usb_rndis_bulk_rcv_cb
(

[in] ep_t * ep

[in] RNDIS_PKT *pkt,

);

ep
Handle to the endpoint

pkt
Packet with received data

Description
This function is registered with the USB protocol driver during initialization as the receive call back function for the bulk/data endpoint. The USB driver will use this API to send the RNDIS driver data from the bulk OUT endpoint of the RNDIS Data interface.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

	usb_rndis_bulk_tx_complete_cb
Function to notify completion of transmit on the bulk endpoint

Synopsis

INT32

usb_rndis_bulk_tx_complete_cb
(

[in] ep_t * ep

[in] int pkt_id,

[in] int tx_status

);

ep
Handle to the endpoint

buf
id of the packet that was sent

tx_status
Error status of the transmission

Description
This function is registered with the USB protocol driver during initialization as the transmit complete notification call back function for the bulk endpoint. The USB driver will use this API to indicate to the RNDIS driver about the completion of the transmit of bulk data and also whether any error occurred during transmit. Here the OS END driver is notified of the transmit complete event and freeing up of buffers can take place.

Return Values
RNDIS_STATUS_OK - Success

Negative value - Error.

5.2.3 DESIGN DESCRIPTION

USB Driver is built around a few key data structures. Key data structures and their relationship is shown in Figure 5-2-2. In this class diagram “USB CORE” represents a logical component and there is no physical data structure for this. Other classes represent corresponding data structures. Cardinality of each association is denoted in the diagram. All these data structures are created and maintained by USB Driver. Neither the hub driver nor HCD owns any data structures shown in the diagram.

typedef struct RNDIS_MCB

{

 /********************** USB Descriptors ******************************/

 USB_DEVICE_DESCRIPTOR *ptr_device_desc;

 RNDIS_USB_CONFIG *ptr_config_desc;

 HAL_USB_STRING_ENTRY *ptr_string_desc;

 /********************** HANDLE **************************************/

 USB_HND h_drv; /* USB Driver handle */

 HAL_HND h_end; /* Handle of the END driver. */

 HAL_HND ctrl_in; /* Control IN endpoint handle */

 HAL_HND ctrl_out; /* Control OUT endpoint handle */

 HAL_HND intr_in; /* INTERRUPT endpoint handle */

 HAL_HND bulk_in; /* BULK IN endpoint handle */

 HAL_HND bulk_out; /* BULK OUT endpoint handle */

 /********************* RNDIS Protocol *******************************/

 RNDIS_STATE state; /* RNDIS Stack Current State */

 UINT8 host_macadd_cur[6]; /* HOST MAC Address */

 UINT8 host_macadd_default[6]; /* Permanent HOST MAC Address */

 UINT32 packet_filter; /* PACKET Filter (Multicast / Promiscuous / Broadcast / Directed */

 /* These lists handle the responses for control messages. The FREE list is a list

 * of responses messages that are free and can be used by the function layer. The

 * response lists contains all the responses that have been queued and will be txed

 * to the HOST as and when the HOST will request for them through a GET_ENCAPSULATED

 * message. */

 RNDIS_RESPONSE* p_free_list;

 RNDIS_RESPONSE* p_response_list;

 /* Notification response to be sent to the HOST is always constant. Create it once

 * and store it in the structure. */

 USB_SETUP response_available; /* To be sent over interrupt endpoint */

 /* Transmit - For BULK data. */

 RNDIS_DATA_HEADER *ptr_bulk_free_list;

 /* Multicast Address. The RNDIS layer needs to keep track of the Multicast

 * address information that is passed from the HOST. */

 UINT8 mcast_list[HAL_USB_MAX_MAC_MCAST_LIST][6]; /* Array for Multicast address */

 int mcast_list_size; /* List size in BYTES. */

 /* Statistics */

 RNDIS_STATS stats; /* Add up count */

} RNDIS_MCB;

typedef struct rndis_ep_t

{

 UINT8 type; /* EP Type (CONTROL|BULK|INT), Dir , Status */

 INT32 (*receive)(struct USB_CLASS_DRV_EP *ep, struct USB_CLASS_DRV_PKT *pkt);

 INT32 (*sendComplete)(struct USB_CLASS_DRV_EP *ep, void *priv);

 USB_ENDPOINT_DESCRIPTOR *epd;

} rndis_ep_t;

struct buf_node {

char *buf;

UINT32 len;

struct buf_node *next;

} buf_node_t;

struct RNDIS_PKT

{

UINT32 os_pkt_id;

struct buf_node *head;

};

#define RNDIS_MAX_BUFFER_SIZE 512

struct RNDIS_RESPONSE

{

 char data[RNDIS_MAX_BUFFER_SIZE];

 UINT16 len;

 struct RNDIS_RESPONSE *next;

};

Fig. 5.2.3.1 RNDIS Response Buffer Pool

typedef struct RNDIS_DATA_HEADER

{

 char message[44];

 UINT32 chain_id;

 struct RNDIS_DATA_HEADER *next;

}RNDIS_DATA_HEADER;

RNDIS State Transition Diagram

See Microsoft RNDIS 1.1 Spefication.

RNDIS Initialization Flow

See Microsoft RNDIS 1.1 Spefication.
VxWorks END Driver

5.3.1 COMPONENT DESCRIPTION

Same as USB 1.1 RNDIS Driver.

5.3.2 INTERFACE DESCRIPTION

Same as USB 1.1 RNDIS Driver.

5.3.3 DESIGN DESCRIPTION

Same as USB 1.1 RNDIS Driver.

5.2. Management & Configuration Utilities

 5.1.1 COMPONENT DESCRIPTION

This interface will be developed so that other management utilities and tool can developed using these APIs.

5.1.2 INTERFACE DESCRIPTION

List of API routines :

void usb_print_device_descriptor();

void usb_print_config_descriptor();

void usb_print_interface_descriptor();

void usb_print_endpoint_descriptor();

void usb_print_stats(ALL | MIB-II);

void usbctl();

void rndisctl();

5.1.3 DESIGN DESCRIPTION

TBD.
QUALITY POLICY

< Testing policies, planning etc. have to be documented here >

Appendix A – USB IOCTL Operations

IOCTL_GET_USB_CONFIG
- get all descriptors

IOCTL_SET_USB_CONFIG
- set descriptors

IOCTL_GET_STATS_USB
- get USB related status / stats (MIB)

IOCTL_SET_SERIAL_NO

- set USB Serial Number

IOCTL_GET_SERIAL_NO

- get USB Serial Number

IOCTL_SET_VENDOR_ID

- set USB Vendor ID

IOCTL_GET_VENDOR_ID
- get USB Vendor ID

IOCTL_SET_PRODUCT_ID
- set USB Product ID

IOCTL_GET_PRODUCT_ID
- get USB Product ID

IOCTL_SET_MAX_POWER
- set USB Max Power

IOCTL_GET_MAX_POWER
- get USB Max Power

IOCTL_GET_BULK_EP_SIZE
- get USB End Point Size

IOCTL_SET_BULK_EP_SIZE
- set USB End Point Size

IOCTL_GET_INT_EP_SIZE
- get USB End Point Size

IOCTL_SET_INT_EP_SIZE
- set USB End Point Size

IOCTL_GET_CTRL_EP_SIZE
- get USB End Point Size

IOCTL_SET_CTRL_EP_SIZE
- set USB End Point Size

IOCTL_GET_ATTRIB

- get USB attributes

 (Bus/Self Power, Remote Wakeup support)

Appendix B – RNDIS IOCTL Operations

IOCTL_NOTIFY_LINK_STATE
- to notify connect, disconnect to Host

IOCTL_GET_USB_INFO

- get USB level details like vendor ID, Product ID, etc.

IOCTL_GET_STATS_NET
- get network related stats (Tx/Rx Stats)

IOCTL_GET_STATS_USB
- get USB related status / stats (MIB)

IOCTL_SET_MIB_INTF_PARAMS
- MIB interface functions

IOCTL_GET_MIB_INTF_PARAMS
- MIB interface functions

Appendix C – USB Error List

TBD.

Appendix D – RNDIS Error List

RNDIS_MEMORY_ALLOC_ERROR

RNDIS_INIT_ERROR

RNDIS_START_ERROR

RNDIS_STOP_ERROR

RNDIS_SHUTDOWN_ERROR

RNDIS_SEND_ERROR
RNDIS_RCV_ERROR

RNDIS_USB_PROTO_INIT_ERROR

RNDIS_USB_PROTO_START_ERROR

RNDIS_USB_PROTO_STOP_ERROR

RNDIS_USB_PROTO_SHUTDOWN_ERROR

RNDIS_USB_EP_OPEN_ERROR

RNDIS_USB_EP_SEND_ERROR

RNDIS_USB_EP_RCV_ERROR

RNDIS_USB_EP_CLOSE_ERROR

RNDIS_UNSUPPORTED_IOCTL_ERROR

RNDIS_IOCTL_ERROR

RNDIS_OUT_OF_SYNC_ERROR

RNDIS_INVALID_PROTOCOL_PACKET_ERROR

RNDIS_INVALID_CONTROL_PACKET_ERROR

RNDIS_INVALID_ENCAPSULATED_COMMAND_ERROR

RNDIS_NO_RESPONSE_AVAILABLE_ERROR

RNDIS_OUT_OF_HEADER_BUFFERS_ERROR

RNDIS_INCORRECT_VERSION_ERROR

RNDIS_UNSUPPORTED_QUERY_ERROR

RNDIS_BAD_SET_REQUEST_ERROR

VxWorks

END Driver

Mgmt & Config

CPPI 3.0 Interface

USB RNDIS Driver

USB 2.0 Protocol Driver

USB 2.0 HAL

PSP SAL

P

S

P

S

A

L

Mgmt

Utilities

USB 2.0 Device Hardware

PSP USB 2.0 Driver

BSTC HAL

HAL Interface

EP Manager

RNDIS

USB 2.0 HAL

MIB Manager

USB 2.0 Protocol Driver

END Driver

RNDIS – USB Interface (Using UPDI)

MIB

Manager

Init/Cfg

Manager

RNDIS Driver Interface

Buffer Manager

Init/Reset Unit

Control Unit

Network Data Transfer Unit

Mgmt

Utilities

State Machine

EP0 Recv ()

Descriptors

EP0 Recv ()

Config Event

EP0 Recv ()

SET CONFIG

EP0 Send () (Descriptors)

SET ADDRESS

Reset Event

Reset interrupt

GET DESCRIPTOR

USB Protocol Driver Interface

USB RESET

HAL

USB bus

RNDIS driver

USB 2.0 Driver

USB bus

ENDSendComplete

Rndis SendComplete

OSSendComplete

Usb_drv_send

Recv_complete()

Recv_return

Rndis_recv()

Bulk IN Data

Rndis_send()

Rndis Send()

END_RCV_RTN

usb_drv_recv()

Bulk OUT Data

END / net device driver

HAL

RNDIS driver

USB 2.0 Driver

USB bus

Class response

EP0 IN Data

EP0 IN Data

Class response

Class request

STD request

EP0 OUT Data

STD response

Class request handler

EP0 OUT Data

HAL

RNDIS driver

USB 2.0 Driver

Free Buffer Pool

buf

buf

buf

Revision 0.2 USB 2.0 RNDIS Driver Design Document Page 16 of 37

_1092645488.doc
[image: image1.png]

_948891555.doc

